Ninth International Conference on Human-Computer Interaction in Aeronautics. Massachusetts Institute of
Technology, Boston, 2002.

CONSTRUCTING HUMAN-AUTOMATION INTERFACES:
A FORMAL APPROACH

Michael Heymann
Technion -Israel Institute of Technology
Haifa, Israel

Asaf Degani
NASA Ames Research Center
Moffett Field, CA

ABSTRACT

In this paper we present a formal methodology and an algorithmic
procedure for constructing human-automation interfaces and
corresponding user manuals. Our focus is the information provided to the
user about the behavior of the underlying machine, rather than the
graphical and layout features of the interface itself. Our approach involves
a systematic reduction of the behavioral model of the machine for the
purpose of determining information that must be provided on the interface,
as well as information that can be safely removed from it. This reduction
procedure must satisfy two requirements: First, the interface must be
correct so as not to cause mode confusion that may lead the user to
perform incorrect actions. Secondly, the interface must be as simple as
possible and not include any unnecessary information. The algorithm for
generating such interfaces can be automated, and a preliminary software
system for its implementation has been developed.

INTRODUCTION

In the majority of today’s automated systems, humans are still responsible for monitoring
the behavior of the system. Aircraft pilots, medical technicians, and engineers are among
the many users that interact with automated control systems to accomplish specified
operational tasks [10]. These tasks may include (1) monitoring a machine’s mode
changes during an automatic landing, (2) executing specific sequences of actions for
setting-up a medical radiation machine, and (3) preventing a system from reaching unsafe
states.

Automated control systems such as autopilots and flight management systems exhibit
extremely complex behaviors. These are large systems that react to external events and
internal events, as well as user-initiated events. For the user to be able to monitor the
machine and interact with it to achieve a task, the information provided to the user about

the machine must, above all, be correct. In principle, correct interaction can always be
achieved by providing the user with the full detail of the underlying machine behavior,
but in reality the sheer amount of such detail is generally impossible for the user to
absorb and comprehend. Therefore, the machine interface and related user manuals are
always a reduced, or abstracted, description of the machine’s behavior. Naturally, we
prefer interfaces that are simple and straightforward. This reduces the size of user
manuals, training costs, and perceptual and cognitive burdens on the user.

In automated control systems such as autopilots and other aircraft systems, the criteria for
selecting the information that must be provided to the user (as well as information that
can be abstracted away), are currently based only on engineering and human-factors
judgments. The decisions are then evaluated in a series of laboratory tests, expensive
simulations, and flight tests. When errors are detected, costly changes must be made, and
the system must be re-evaluated. Furthermore, the certification process of proving that an
interface design is safe and efficient places a heavy burden on manufacturers. For
example, the new regulation and FAA Advisory Circular on Flight Guidance Systems
requires that the applicant prove that the system is devoid of confusing modes and related
human-automation problems (Federal Aviation Regulation 25.1329).

Despite the best efforts of engineers and hundreds of hours of tests and simulations,
interface errors may go undetected because simulation and tests can never fully examine
all the possible modes and state combinations. The operational community is well aware
of the consequences of these errors: There are hundreds of narratives in the Aviation
Safety Reporting System (ASRS) database describing incidents in which pilots find
themselves confused and unsure what the machine is doing [1,12]. There are also several
airline accidents in which inadequate interfaces were cited as a contributing factor [6,8].
In a recent fuel-starvation incident that resulted in a dead-stick approach and landing by a
commercial jetliner at Lajes Field, Azores Islands, there are preliminary indications that
the fuel system interface may have been overly complex and misleading [2].

In a recent paper [4], we presented an approach and methodology for verifying interfaces
and user manuals. The methodology evaluates whether the interface and user-manual
information are correct and free of errors—given a description of the machine, the user’s
task, an interface, and the information in the user manual. The procedure can be
automated and used in the verification of complex human-automation systems.

In this paper we take an additional step and discuss a general approach for constructing
correct and succinct interfaces. The algorithm presented here is suited for automated
machines that can be described as a system of states. To illustrate the approach and
algorithm, we use a simplified version of a transmission system in a road vehicle. Efforts
are currently under way to apply the methodology to a portion of the flight management
system. A more detailed treatment of this topic can be found in a recent NASA Technical
Memorandum [5].

FORMAL ASPECTS OF HUMAN-MACHINE INTERACTION

In analyzing human automation interaction from a formal perspective, we consider four
major elements: (1) the behavior of the machine (its modes and states), (2) the
operational tasks (knowing which mode the machine is in), (3) the interface (the mode
annunciations), and (4) the user’s model of the machine’s behavior (the information in
the Aircraft Operating Manual).

Machine

Our focus in this paper is on automated machines that can be described as a system of
states. A state represents a mode, or a configuration, of the machine. The machine
transitions from one mode to another. Some of these transitions are triggered manually by
the user; for example, the pilot switches from Flight Level Change to Vertical
NAVigation mode. Other transitions are automatic: they are triggered by the machine’s
internal dynamics (e.g., timed transitions—if there is no pilot response within 30 seconds,
then the machine switches automatically to another mode), or by the external
environment (e.g., sensed transitions—if the outside temperature is below 32 Fahrenheit,
then the machines switches automatically to another mode). In the figures that follow, we
use the convention that manual (user-triggered) transitions are depicted by solid arrows,
while automatic transitions are dashed. The transitions are labeled by Greek symbols
indicating the events under which the machine moves from state to state.

(HIGH ’ 5 ¥ [
| H1 [H2 H3
{ v, ‘Y . ’Y\
i P B |p p
—
MEDIUM | - —
M1 M2
e L=
| |
. |B B P Ip
Low) 4
\8 ' \6 -‘r
[L1 L2 |, L3]
v ’Y\ / ’Y\

Figure 1. Transmission system

The machine in Figure 1 describes a simplified three-speed transmission system of a
vehicle. The transmission has eight states (representing internal torque-levels). These are
grouped into three speed modes: LOW, MEDIUM, and HIGH. States L1, L2, L3 are in
the LOW speed mode; M1, M2 in the MEDIUM speed mode; and H1, H2, H3 in HIGH.

The transmission shifts up and down either automatically (based on throttle, engine, and
speed values) or manually (by pushing a lever). Manual up-shifts are denoted by event 3
and down-shifts by event p. Automatic up-shifts are denoted by event 0, and automatic
down-shifts by event y.

User’s Task

The second element of our framework is the user’s operational tasks. With respect to the
transmission system, the user’s task is to track the three speed modes unambiguously. In
other words, the user must be able to determine the current mode of the machine and
predict the next mode of the machine. This requirement is akin to the type of questions
pilots usually ask about automated cockpit systems such as autopilots and flight
management systems: “What’s it doing now?” “What’s it going to do next?” and “Why is
it doing that?” [13].

We can describe the user’s task by partitioning the machine’s states (the eight internal
states in Figure 1) into separate clusters, or modes. In the transmission system there are
three such clusters: LOW, MEDIUM, and HIGH. Note, however, that the user is required
to track only the modes and not every internal state change inside the machine (e.g., the
transitions between mode M1 and M2 inside MEDIUM).

Interface

The interface commonly consists of two components: (1) a control panel through which
the user enters commands, and (2) a display through which the machine presents
information to the user about the status of the machine. The status display shows the
active mode, the armed modes, and the events that take place.

As discussed earlier, the interface always provides the user with a simplified view of the
machine. In almost any display, especially those for automated systems, many of the
machine’s internal events and states are abstracted and are not presented to the user. And
for a good reason— otherwise, the size of cockpit displays would be colossal. Hence the
display provides only partial and incomplete information about the underlying behavior
of the machine. The cardinal issue, which we will get to shortly, is which information can
be safely removed or abstracted, and which must not be removed.

Figure 2 describes one proposed display for the transmission system. Naturally, there are
many other display options. But in this one there are three modes indicators (LOW,
MEDIUM, and HIGH), and the user switches among the modes by pushing up or down
on the gear lever. Note that in this display, all the internal states (e.g., L1, L2, ...to H3)
are removed from view.

mode indicators shift lever
! .

HIGH

® o
MEDIUM up

Figure 2. Display and control panel

User Model

Manufacturers normally provide users with information about the working of the
machine in the user manual (e.g., Aircraft Operation Manual, Flight Crew Operations
Manual). Most verbal statements in the Aircraft Operational Manual that describe the
behavior of autopilots, for example, have the following form: “when the autopilot is in
mode X and button ‘k’ is pushed, the autopilot engages in mode Y.” Similarly, the user
manual for the transmission system tells the driver that when the transmission is in LOW
mode, pushing the lever up (and triggering event 3) will cause the system to shift to
MEDIUM mode. When in MEDIUM mode, a shift up will give HIGH, and so on. This
series of fragmented statements describe how the machine works and how to operate the
machine. But again, note that these statements are also a simplification of the actual
behavior of the machine; a lot of information about the machine’s internal events has
been omitted. If this were not the case, the size (and weight) of operating manuals would
be huge.

In practice, the user manual is written based on the display. This is naturally so because
the operating manual explains and constantly refers to the display. It is therefore possible
to combine the user-manual information with the display to create a model, as shown in
Figure 3. In this way, the display (Figure 2) is “embedded” in the user model, and we can
prudently continue the analysis without having to consider the interface separately.

To summarize, what is being removed from the interface, user manual, and consequently
from the user’s awareness is the automated internal transitions that take place within each
mode, or gear. For example, the LOW mode has three possible internal states L1, L2, and
L3. When the user first up-shifts manually into LOW gear, L1 is the active state until a
certain combination of throttle, engine, and speed is reached. At this point there is an
automatic transition to L2. This internal transition is not evident to the driver-user, who is
aware only of being in LOW. The question is how much of the internal information must
be presented to the user in order to be able to operate the machine correctly?

EVALUATION OF INTERFACES

Now let us evaluate the user model described in Figure 3. This suggested user model is a
very simple one and seems intuitively clear: The display shows only the three modes
(LOW, MEDIUM, and HIGH). All the internal states of the machine are removed and all
the automatic (internal) transitions are suppressed.

HIGH
b ¥
MEDIUM
B
LOW

B

Figure 3. User model

-5-

Is this a good interface?

Let us look at it more carefully. To do this we need to consider the user model (of Figure
3) in the context of the full machine model (Figure 1). The manual shifts from MEDIUM
up to HIGH or down to LOW, as well as the down-shift from HIGH to MEDIUM, are
always predictable —the user will be able to anticipate the next mode of the machine.
However, the up-shift from the LOW gear depends on the internal state: up-shifts from
L1 and L2 transition to MEDIUM mode, while the up-shift from L3 switches the
transmission to the HIGH mode. As a consequence, the user, who has only Figure 3 to
work with, will not be able to predict whether the up-shift will lead the transmission from
LOW to MEDIUM, or from LOW to HIGH. We therefore must conclude that this user
model (and display) are not adequate for the task.

An alternate user model that may remedy the above problem is depicted in Figure 4. This
modified display shows two LOW modes (LOW-1, LOW-2). The user manual further
explains that the transitions between LOW-1 and LOW-2 occur automatically. The user
is told that upon up-shift from LOW-1, the system transitions to MEDIUM, while on up-
shift from LOW-2, the system goes to HIGH.

HIGH
b P
MEDIUM

™~ b T
3
LOW-1 LOW-2
Y
lp

Figure 4. Alternate user model
Again, we ask: is this a good interface?

Well, by intuitive inspection it seems quite reasonable —we have taken care of the
problem with the manual up-shift from LOW. But let us apply the verification
methodology that was mentioned earlier to confirm it formally. The algorithmic details of
this verification methodology and its application to an automated flight control system
are provided elsewhere [4]. Here, we will give a brief synopsis of the methodology in the
context of the transmission example.

FORMAL VERIFICATION OF INTERFACES

The objective of the verification methodology is to determine whether a given user model
(and interface) enable the user to operate the machine correctly. The essence of the
procedure is to check whether the user model “marches” in synchronization with the
machine model. This is determined by creating a composite model of the user and
machine models (see Figure 5).

We assert that a user model is correct if there exist no error states, no blocking states,
and no augmenting states in the composite model. An error state represents a divergence
between the machine models and user models. That is, the interface tells the user that the
machine is in one mode when in fact the machine is in another. A blocking state
represents a situation in which the user can in fact trigger a transition from one mode to
another, yet this information is not provided to the user (and when the transition happens,
the user is surprised). An augmenting state is a situation in which the user is told that a
certain mode change is possible, when in fact it may be the case that the machine will not
switch into this mode or sub-mode.

Let us apply this methodology to verify whether the alternative user model of Figure 4 is
correct. The machine (of Figure 1) starts in state L1 and the user model (of Figure 4)
starts in LOW-1. So the first composite state is “L1, LOW-1.” Upon an automatic up-
shift transition (event 0, the machine transitions to L2 and the user model to LOW-2.
Now we are in composite state “L2, LOW-2.” Another automatic up-shift (event d), and
we are in “L3, LOW-2.” Now if the user pushes the up shift-lever (event 3) the machine
transitions to H1 and the user model also goes to HIGH, and everything is okay. The user
model runs in complete synchronization with the machine model.

e)
H1,HIGH | | H2,HIGH |, | H3, HIGH
\ X : Y

B

B“ Pl—*P p

Yy

¥

(o (R
M1, MEDIUMJ:: M2, MEDIUNﬂ‘
. Y

L
error state |p p

.\ B B Y Y

5 (8
[L1 , LOW-1]:: L2, LOW-Z} .[LE ,LOW-2]
YL

7 UREE
5 .

L2,LOW-1 | &

Figure 5. Composite model of the alternative user model

Recall that the user model is aimed at enabling the operator to determine unambiguously
which speed-mode the transmission is in, or is about to enter. With this mind, look at the
following sequence: we start as before in “L1, LOW-1.” Automatic up-shift (event d)
takes place and now we are in the composite state “L2, LOW-2.” The user now decides to
use the manual up-shift gear. The machine (according to Figure 1) will transition to state
M1, yet according to the user model of Figure 4, we are now in HIGH mode. The new
composite state is “M1, HIGH.” This, of course, is a contradiction! The user thinks he is
in HIGH mode where in fact the underlying machine is in MEDIUM (state M1). The
resulting ambiguity is a classical mode error [9]. We therefore must conclude that the
user model of Figure 4 is also incorrect and work on finding another alternative.

It is of course possible to concoct other user models and then iteratively employ the
verification procedure to determine their correctness. However, such an effort is not
likely to be very efficient, specially for a complex system: it may take considerable effort
to develop and verify one design after another, with no guarantee of success.
Furthermore, even when a correct interface is identified, there is no assurance that it is
the simplest possible; there could be an equally good, or even better interface abstraction,
hiding just around the corner. The development of a systematic approach for constructing
interfaces that are both correct and succinct is the subject of the next section.

MACHINE MODEL REDUCTION

As mentioned in the Introduction, one possible choice of user model is to display all the
internal states of the machine. This will insure that there is never any problem in
predicting the next state of the machine. And therefore there will never be an error state.
But the display size will be unimaginably large, the user manuals weigh tons, and the
human operator become overwhelmed.

So our objective becomes clearer: to generate the best possible user models and interfaces
that will allow the operator to perform tasks safely. By best user models and interfaces
we mean ones that cannot be further reduced and simplified. To accomplish this, we take
the machine model of Figure 1 and reduce it systematically with reference to the task
requirements.

The proposed reduction procedure, which computes all possible irreducible user models,
is a formal mathematical process that consists of several computational steps. In the first
step, compatible sets of internal states are computed. These are sets of states that, in
principle, can be grouped together to form superstates. These superstates have the
property that individual state inside them need not be distinguished by the user. The sets
of compatible states are successively enlarged until maximal compatible sets are obtained
that cannot be further enlarged.

The second computational step consists of selecting a suitable subset of the set of
maximal compatibles that can form a state set of a reduced model. This selection process
is generally not unique, and there may be more than one choice. Each choice will yield a
different user model and interface. The ultimate choice must be based on engineering and
human-factors considerations of the designers. Finally, the last step consists of
constructing the abstracted user model and interface (that are associated with a particular
choice).

In the next sub-sections we shall describe in some detail how the computation of reducing
the machine model is carried out. We re-emphasize that the computation is formal and
rather technical. The reader who is not interested in learning the detailed computational
steps, may wish (at least on first reading) to skip to the next section and see the results of
the formal computation and how the new user model (and interface) are constructed.

Compatible States

We mentioned earlier that the user model must enable us to operate the system correctly
with respect to the user’s task(s). In our example, the user model must allow the operator

-8-

to track the machine as it switches from one mode to another. But we have already
learned there is no requirement that the user track every internal state of the machine.
There is no need for us to distinguish between two internal states (say M1 and M2 of
mode MEDIUM), if, after following any given event sequence, we end up in the same
mode (e.g., HIGH, MEDIUM or LOW), regardless of which of the two states we started
in. If that’s the case, we say that the two states (M1 and M2) are compatible. Two
compatible states can be grouped together in the abstracted model —there is no need to
distinguish between M1 and M2 in the interface.

Identifying Incompatible Pairs

Trying to find state pairs that are compatible is difficult. Instead, let’s turn our attention
to state-pairs that are incompatible. If we can compute all incompatible pairs (that cannot
be grouped together), the remaining pairs must be compatible. Incompatible pairs are, for
example, two states that belong to two distinct modes. Thus, the state-pair L1 and H3 is
incompatible: L1 belongs to mode LOW and H3 belongs to mode HIGH. We must never
group them together on the display; otherwise we create an error-state. Another reason
for deeming a pair of states incompatible is if a transition out of one of the states and the
same transition out of the other lead us, respectively, to two states of a pair that was
already deemed incompatible.

Now we proceed to identify all the incompatible (and compatible) pairs in the machine
model. Once we identify compatibles, we can group them together, abstract them, and
ultimately reduce the display complexity. See [7,11], where related model reduction
procedures are discussed.

Initial Resolution

Using the above observations regarding compatible and incompatible pairs, we proceed
as follows to create the initial resolution.

1. For each state pair (e.g., L1 and H3) that can be immediately determined as
incompatible (because they belong to two distinct modes, LOW and HIGH), we
mark the corresponding cell I (for Incompatible).

2. For all other state-pairs, we write in their cells the next transition pair. For
example, for the state pair (M1,M2) the next transition pair, after initiating the
common event f3, is (H1,H2).

Figure 6 shows all possible state-pairs for the transmission system (there are 28 such
pairs), as well as the initial resolution. To explain how we get this initial resolution let’s
start at the top (the machine model is provided so that the reader can follow the process):
The state pair (L1, L2), transitioned on automatic up-shift d to the pair (L2, L3). And
that’s what we write inside the top cell. The state pair (L1, L3) transitions into (M1,H1)
on manual up-shift 3. However, from (L2, L3) there are two possible transitions:
automatic down-shift y takes us to (L1,L.2), and manual up-shift §§ takes us to (M1,H1).
So we place these two transition pairs in the cell of L2 and L3. (M1,M2) takes us to (H1,
H2) on manual up-shift § (in the table we write the triggering event as a subscript for the
reader’s convenience). And so on.

}H'GH =LH_1 _;[H2 }f’_}[HS]‘
p P

(L2,L3) '—IB : |
L PEDEUMQ‘BW Lo ’
L3 [MiHDg(LLL), N ol
Mi.Hny
| ‘%@Eﬁ L3 | LOW‘
M1 | [| P
{HI.HE]ﬁ
M2 | [I
H1 | [| I L
(Hz2,H3)y
H2 I | I [I
(H1,H2),
BT T[T |1 I f

L1 L2 L3 M1 M2 HA1 H2

Figure 6. Initial resolution

Notice that the cell H1,H3 is empty. This is because it is neither incompatible nor does it
have associated transition pairs (on p we end up in only in M2).

Second Step

We now continue with the reduction process. But from this step onward, we do not need
to refer to the machine model anymore. We simply start substituting values in the cells
according to the following procedure:

1. Cells that are incompatible stay that way (I).

2. Every cell that has not yet been determined as I in Figure 6 (e.g., L1,L3) is
updated as follows:

e If acell includes a transition pair (e.g., M1,H1) that has already been
determined to be incompatible (I), then the harboring cell is also denoted I
(see Figure 7).

* Otherwise, each transition pair in the cell is replaced by all the transition pairs
that appeared in their original cell. For example, the cell of (L1,L2) contains
the transition pair (L2,L.3)p. We look into cell (L2,L.3) and find in there the
state-pairs (L2,L3)y and (M1,H1)B. We place them in (L1,L2).

Figure 7 shows the table after the completion of the second step. First, as mentioned
earlier, we replaced the transition pairs in the cell (L1,L2) by those in the cell (L2,L3).
The cells (L1,L3) and (L2,1.3) were denoted as I because their cells include incompatible
pairs. The remaining undecided state pairs (those that have not yet been given the value I)
were modified according to the above procedure. For example, in the cell (M1,M2) we
placed the transition pair (H2,H3)3d.

-10 -

(L1.L2),
L2 (M1.Hl)y
| T | T
M T T |
M2 I I I (H2,H3);
AL I C O (O I A | |
H2 I I I I I (H1.H2),
H3 I I I I I (H2,H3)5
L1 L2 L3 M1 M2 H1 H2

Figure 7. Second reduction step

Third Step

In the third step, the table shown in Figure 8 is obtained. Here cell (L1,L2) is marked I
because one of the transition pair inside it—(M1,H1)p —is incompatible. The remaining
undecided cells are modified as specified by the procedure.

L2 I

L3 | |

w111

we | 1| "M

SRR ER SR

el |1 oM

=l 11 1|1 e

L1 L2 L3 M1 M2 HA1 H2

Figure 8. Third reduction step

Fourth Step

In this step we realize that no additional incompatible pairs are identified, and the table
remains identical to that of Figure 8. At this point, no further iterations will ever produce
an L. Therefore, all the undecided cells are marked C (for compatible), as in Figure 9.

-11 -

L2

L3

M1

M2

H1

H2

H3

bt | b | |] |] p—
i L L R N e I

bt | b | |)| —

C
[|1
[
[

[| C|C

L1 L2 L3 M1 M2 H1 H2

Figure 9. Completed reduction table

This concludes the resolution procedure and the determination of all incompatible and
compatible pairs.

Computing All Compatible Sets

Following the computation of all compatible pairs, we must compute all compatible
triples, quadruples, etc., until no new compatibles are found. The computation is based on
the observation that a set of states is compatible if all its constituent pairs are compatible
[5]. This means that a state triple is compatible if its three constituent pairs are
compatible, a state quadruple is compatible is its four constituent triples are compatible,
and so on.

Creating the User Model

Not every compatible set is a good candidate of a succinct user model. If a compatible set
is contained within a bigger compatible set, we might as well choose the bigger one as a
better candidate. Thus, we are actually interested only in the maximal compatibles that
are not contained in any bigger compatible set. In general, there are many maximals. To
create a base state-set for a reduced model, we must choose from the set of maximal
compatibles judiciously.

We must insure that our selection is such that each state of the machine model is
represented in at least one of the selected maximal compatibles. But we do not want
redundancy. In particular, we do not want to be able to eliminate any maximal compatible
from our selection without destroying the full representation requirement. Such a set of
maximal compatibles is called a minimal cover. Thus, a minimal cover of maximal
compatibles, forms a set of states for an efficient user model.

-12 -

CONSTRUCTING THE INTERFACE

Figure 9 shows that the compatible pairs (C) consists of the two internal states in
MEDIUM mode (M1,M2) as well as all the possible state-pairs in HIGH ((H1,H2),
(H1,H3), and (H2,H3)). The results tell us that we do not need to display the two internals
states in MEDIUM, and none of the three internal states in HIGH. And what about LOW
mode? Since L1, L2, and L3 do not appear in any compatible pairs, we have no choice
but to display them to the user. Figure 10 is our best (i.e., minimal) user model possible
for the machine of Figure 1.

HIGH
BT
MEDIUM | ,

~ b T !

3_, 18_
LOW-1]: LOW-2 _.[LOW-3

Figure 10. The reduced user model

CONCLUSIONS

The problem of incorrect and overly complex interfaces has plagued the design of
human-automation interaction, and still does. Such design problems are responsible, in
part, for what has been termed “automation surprises” [14]. Such surprises occur when
pilots have difficulty understanding the current status of an automatic system as well as
the consequences of their interactions with it [3].

In this paper we have shown a methodology and an algorithmic procedure for
constructing interfaces. We have focused on the information content of the display, and
not on the graphical user interface. Two objectives have guided us in developing the
methodology: (1) that the interfaces and user models be correct; (2) that they be as simple
as possible.

This paper has presented the flavor of our approach to constructing correct and succinct
user interfaces, and by use of the transmission example illustrated the iterative reduction
process, which is at the heart of the methodology. The reader is encouraged to refer to [5]
for the details.

The methodology presented here deals with discrete-event systems (those that have states
and modes). However, the approach is general. It remains an interesting topic of future
research to expand this approach to systems that have both continuous and discrete events
(hybrid systems) as well as to timed systems. And indeed, promising results in extending
the methodology of [4] to the verification of a complex hybrid system (an autoland
system of a commercial airliner) have already been obtained.

- 13-

REFERENCES

1.

10.

11.

12.

13.
14.

Aviation Safety Reporting System. (1998.) FMC altitude capture function reports.
Search Request No. 5183. Mountain View, CA: Battelle Memorial Institute.

Aviation Week and Space Technology. (2001). Airbus A-330 Fuel System: How It
Works and Pilot Choices. March 12, 2001, 34-37.

Degani, A., Shafto, M., and Kirlik, A. (1999). Modes in Human-Machine Systems:
Constructs, representation, and classification. International Journal of Aviation
Psychology, 9(2), 125-138.

Degani, A. and Heymann, M. (2002). Formal Verification of Human-Automation
Interaction. Human Factors.

Heymann M., and Degani A. (2002). On abstractions and simplifications in the design of
human-automation interfaces. NASA Technical Memorandum 2002-211397. Moffett
Field, CA. (http://ic.arc.nasa.gov/publications/number.html).

Indian Court of Inquiry (1992). Report on accident to Indian Airlines Airbus A-320
aircraft VT-EPN at Bangalore on 14th February, 1990. Indian Government.

Kohavi, Z. (1978). Switching and Finite Automata Theory. New York: McGraw-Hill.

National Transportation Safety Board (1997). Wheels-Up Landing of Continental
Airlines Flight 1943, Douglas DC-9 N10556, Houston, Texas, on February 19, 1996.
(Report Number: AAR-97-01). Washington DC: NTSB.

Norman, D. A. (1983). Design rules based on analysis of human error. Communications
of the ACM, 26(4), 254-258.

Parasuraman, R., Sheridan, T.B., and Wickens, C.D. (2000). A model for the types and
levels of human interaction with automation. IEEE Transaction on Systems, Man, and
Cybernetics — Part A: Systems and Humans, 30(3), 286-297.

Paull, M.C. and Unger, S.H. (1959). Minimizing the number of states in incompletely
specified sequential switching functions. Institute of Radio Engineers Transactions on
Electronic Computers, 356-367.

Vakil, S., Hansman, R. J., Midkiff, A. H., and Vaneck, T. (1995). Mode awareness in
advanced autoflight systems. In T. B. Sheridan (Ed.), Proceeding of the International
Federation of Automatic Control; Man-Machine Systems (IFAC-MMS) Conference.
Boston, MA: IFAC.

Wiener, E.L. (2002). Personal communication, April 5.

Woods, D., Sarter, N., and Billings, C. (1997). Automation surprises. In G. Salvendy
(Ed.), Handbook of human factors and ergonomics (1926-1943). New York: John
Wiley.

- 14 -

